
8 Derivative functions

Objectives :
— Define the derivative function
— Know the derivative functions of common functions
— Be able to use the formulas for the derivative of a sum, a product, and a quotient
— Study the derivatives of more complex functions using these formulas

1. Derivative Function
Let f be a function defined and differentiable at every a in an interval I.

The hypothesis ”differentiable” means that for a ∈ I, limh→0
f(a+h)−f(a)

h exists.
We called this limit the ≪ derivative number of f at a ≫ in Chapter ??, and we denoted it by f ′(a).

Définition 8.1 Let f be a function differentiable at every x in an interval I, then the function that asso-
ciates x with f ′(x) is called the derivative function of f on I. It is denoted by f ′.

Example : If we consider the ”position” function, denoted by t 7→ s(t) (in this case, we consider a ”curvilinear
abscissa”), which associates a solid’s position on its trajectory to an instant t, then :

— The derivative function of s(t) corresponds to the velocity of the solid, so we denote it by v(t) instead
of s′(t).

— We can even look for the derivative function of v(t), which corresponds to the acceleration of the solid,
and we denote it by a(t) rather than v′(t) or s′′(t).
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2. Derivatives of Common Functions

A. Constant Function

Let k ∈ R and f : x 7→ k, for x ∈ R. For h ̸= 0, f(x+h)−f(x)
h = k−k

h = 0.
Thus, f is differentiable on R, and for all x ∈ R, f ′(x) = 0.

Propriété 8.1 The derivative of a constant function is the zero function.

B. The Function x 7→ xn, n ∈ N∗

Propriété 8.2 Let n ∈ N∗ and f be the function defined on R by f(x) = xn.
Then f is differentiable on R, and for x ∈ R, we have f ′(x) = nxn−1.

Démonstration Idea of the proof :
Let x ∈ R and h be a nonzero real number. Let’s compute the quotient f(x+h)−f(x)

h . First, we have
f(x+ h) = (x+ h)n. Expanding this expression, we obtain terms in xn, xn−1 × h, xn−2 × h2, . . ., and hn. By
carefully analyzing how the product (x+ h)(x+ h) . . . (x+ h) expands, we notice that the term xn appears
only once, and the term xn−1 × h appears n times. Thus, we have :

(x+ h)n = xn + n× xn−1h+ · · ·+ xn−2h2 + · · ·+ hn

So :
f(x+ h)− f(x)

h
=

n× xn−1h+ · · ·+ xn−2h2 + · · ·+ hn

h
= nxn−1 + hQ(x, h)

where Q(x, h) is a polynomial expression depending on x and h, whose limit as h approaches 0 exists. Thus,
we obtain :

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

(
nxn−1 + hQ(x, h)

)
= nxn−1

Remark : We therefore obtain the following results :
— If f(x) = x, then for x ∈ R, we have f ′(x) = 1 ;
— If f(x) = x2, then for x ∈ R, we have f ′(x) = 2x ;
— If f(x) = x3, then for x ∈ R, we have f ′(x) = 3x2 ;
— . . .

Example : Let f be the function defined on R by f(x) = x3. Determine the equation of the tangent to Cf at
the point with abscissa 1.
The slope of the tangent to Cf at the point with abscissa 1 is given by f ′(1). To calculate f ′(1), we can use
two methods :

— The definition of the derivative : it is the limit as h approaches 0 of the quotient f(1+h)−f(1)
h ;

— Or, more quickly, the derivative function of f : for all x ∈ R, we have f ′(x) = 3x2, so f ′(1) = 3× 12 = 3.
Moreover, we have f(1) = 13 = 1. The equation of T1 is therefore : y = f ′(1)(x− 1) + f(1), that is,
y = 3(x− 1) + 1, or, simplifying : T1 : y = 3x− 2.

C. Reciprocal Function

Propriété 8.3 Let f be the function defined on R∗ by f(x) = 1
x .

Then f is differentiable on R∗, and for x ̸= 0, we have f ′(x) = − 1
x2 .

Démonstration For x ̸= 0 and h ̸= 0 such that x+ h ̸= 0, we have :

f(x+ h)− f(x)

h
=

1
x+h − 1

x

h
=

x−(x+h)
x(x+h)

h
=

−h

x(x+ h)h
= − 1

x(x+ h)
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Thus, we obtain :

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

(
− 1

x(x+ h)

)
= − 1

x2

Example : Let f be the reciprocal function : for x ̸= 0, f(x) = 1
x . Determine an equation of the tangent to Cf

at the point with abscissa 1.
This tangent T1 has the equation y = f ′(1)(x− 1) + f(1).
To determine it, we need f ′(1) and f(1) = 1

1 = 1.
For all x ̸= 0, we have f ′(x) = − 1

x2 , so f ′(1) = − 1
12 = −1.

Thus, T1 has the equation y = −1× (x− 1) + 1, or equivalently, T1 : y = −x+ 2.

D. Square Root Function

Propriété 8.4 Let f be the function defined on R+ by f(x) =
√
x.

Then f is differentiable on R∗
+, and for x ∈ R∗

+, we have f ′(x) = 1
2
√
x

.
Caution : f is not differentiable at 0.

Démonstration For x ∈ R∗
+ and h ∈ R∗

+, we have :

f(x+ h)− f(x)

h
=

√
x+ h−

√
x

h
=

√
x+ h

2 −
√
x
2

h(
√
x+ h+

√
x)

=
h

h(
√
x+ h+

√
x)

=
1√

x+ h+
√
x

Thus, we obtain :

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

1√
x+ h+

√
x
=

1

2
√
x

If x = 0, for h > 0, we have f(0+h)−f(0)
h =

√
h
h = 1√

h
. As h tends to 0,

√
h also tends to 0, so 1√

h
takes

increasingly large values. Therefore, the limit as h tends to 0 of the quotient f(0+h)−f(0)
h does not exist : the

square root function is not differentiable at 0.

Application to Curve Plotting :
To plot the curve representing the square root function, we create a table of values. For each point in this
table, we calculate the slope of the tangent to the curve at that point and then determine the equation of the
tangent :

a 1
4 1 2

f(a) 1
2 1

√
2

f ′(a) 1 1
2

1
2
√
2

— At a = 1
4 , the equation of the tangent is :

y = 1× (x− 1
4 ) +

1
2 , which simplifies to

y = x+ 1
4 ;

— At a = 1, the equation of the tangent is :
y = 1

2 (x− 1) + 1, which simplifies to
y = 1

2x+ 1
2 ;

— At a = 2, the equation of the tangent is :
y = 1

2
√
2
(x− 2) +

√
2, which simplifies to

y = x
√
2

4 +
√
2
2 .

i⃗

j⃗
A

B

C
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3. Operations on Differentiable Functions

A. Derivative of a Sum

Propriété 8.5 Let u and v be two differentiable functions on an interval I.
Let f be the function defined on I by f(x) = u(x) + v(x) (we also write f = u+ v on I).
Then the function f is differentiable on I, and for x ∈ I, f ′(x) = u′(x) + v′(x). We write f ′ = u′ + v′.

Example : Let f be the function defined on R by f(x) = x3 + x2 + 3.

f is differentiable on R as the sum of differentiable functions on R, and for x ∈ R, we have : f ′(x) = 3x2 + 2x.

B. Product by a Real Number

Propriété 8.6 Let u be a differentiable function on an interval I, and λ a real number.
Let f be the function defined on I by f(x) = λu(x) (we write f = λu on I).
Then the function f is differentiable on I, and for x ∈ I, f ′(x) = λu′(x). We write f ′ = λu′.

Example : Let f be defined on R by f(x) = 2x2, and g defined on R by g(x) = 4x3 − 2x.

Then, f ′(x) = 2× 2x and g′(x) = 4× 3x2 − 2.

Consequence :
Polynomial functions are therefore differentiable on their domain.

C. Derivative of a Product

Propriété 8.7 Let u and v be two differentiable functions on an interval I.
Let f be the function defined on I by f(x) = u(x)v(x).
Then, f is differentiable on I, and for x ∈ I, f ′(x) = u′(x)v(x) + u(x)v′(x). We write f ′ = u′v + uv′.

Démonstration (Idea of the proof ) For a ∈ I and h ̸= 0 such that a+ h ∈ I, we have :

(uv)(a+ h)− (uv)(a)

h
=

u(a+ h).v(a+ h)− u(a).v(a)

h

=
u(a+ h).v(a+ h)− u(a).v(a+ h) + u(a).v(a+ h)− u(a).v(a)

h

= v(a+ h)× u(a+ h)− u(a)

h
+ u(a)× v(a+ h)− v(a)

h

Now, we have lim
h→0

v(a+ h) = v(a),

lim
h→0

u(a+h)−u(a)
h = u′(a),

and lim
h→0

v(a+h)−v(a)
h = v′(a).

Assuming (under certain conditions satisfied here) that the limit of a product is the product of the limits (and
similarly for the sum), we get :

lim
h→0

(uv)(a+ h)− (uv)(a)

h
= v(a)× u′(a) + u(a)× v′(a)

This is true for all a ∈ I, so on I we have f ′ = u′v + uv′.

Example : Let f be the function defined on R+ by f(x) = x3
√
x.

f is differentiable on R∗
+ as the product of differentiable functions : f can be written as u× v with{

u(x) = x3

v(x) =
√
x

, where u is differentiable on R and v is differentiable on R∗
+.
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We have therefore :

{
u′(x) = 3x2

v′(x) = 1
2
√
x

.

With these notations, we have f ′ = u′v + uv′ so :

For x > 0, f ′(x) = u′(x)v(x) + u(x)v′(x) = (3x2)
√
x+ x3 × 1

2
√
x
= 3x2

√
x+

x3

2
√
x
.

Simplifying, we get :

f ′(x) = 3x2
√
x+

1

2
x3 ×

√
x√

x
√
x
= x2

√
x+

1

2
x2

√
x =

7

2
x2

√
x

Remark : In the case of this example, property 7.7 allows us to state that f is differentiable on R∗
+, but it does

not allow us to conclude about the differentiability of f at 0.

To do so, we return to the definition of the derivative : f is differentiable at 0 if the quotient f(0+h)−f(0)
h has a

real limit as h → 0. We have :
f(0 + h)− f(0)

h
=

h3
√
h

h
= h2

√
h

Therefore :

lim
h→0

f(0 + h)− f(0)

h
= lim

h→0
h2

√
h = 0

Thus, f is differentiable at 0 and f ′(0) = 0.

Propriété 8.8 (Consequence) Let u be a differentiable function on an interval I.
Let f be the function defined on I by f(x) = (u(x))

2.
Then the function f is differentiable on I and for all x ∈ I, we have f ′(x) = 2× u(x)× u′(x). We write :(

u2
)′

= 2uu′

D. Derivative of a quotient

Propriété 8.9 Let u and v be two differentiable functions on an interval I, with v(x) ̸= 0 for x ∈ I.
Let f be the function defined on I by f(x) = u(x)

v(x) .

Then, f is differentiable on I and for x ∈ I, f ′(x) = u′(x)v(x)−u(x)v′(x)
(v(x))2 . We write f ′ = u′v−uv′

v2 .

Démonstration (Idea of the proof ) For a ∈ I and h ̸= 0 such that a+ h ∈ I, we have :

f(a+ h)− f(a) =
u(a+ h)

v(a+ h)
− u(a)

v(a)

=
u(a+ h).v(a)− u(a).v(a+ h)

v(a+ h).v(a)

=
u(a+ h).v(a)− u(a).v(a) + u(a).v(a)− u(a).v(a+ h)

v(a+ h).v(a)

=
1

v(a+ h).v(a)
× (v(a)× (u(a+ h)− u(a)) + u(a)× (v(a)− v(a+ h)))

We divide the entire expression by h, and we get :

f(a+ h)− f(a)

h
=

1

v(a+ h).v(a)
× v(a)× (u(a+ h)− u(a)) + u(a)× (v(a)− v(a+ h))

h

=
1

v(a+ h).v(a)
×
(
v(a)× u(a+ h)− u(a)

h
+ u(a)× v(a)− v(a+ h)

h

)
Now we have lim

h→0
v(a+ h) = v(a),

lim
h→0

u(a+h)−u(a)
h = u′(a),
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and lim
h→0

v(a+h)−v(a)
h = v′(a).

Assuming (under certain conditions satisfied here) that the limit of a product is the product of the limits (and
similarly for the sum and quotient), we get :

lim
h→0

f(a+ h)− f(a)

h
=

v(a)× u′(a)− u(a)× v′(a)

(v(a))
2

This is true for all a ∈ I, so on I we have f ′ = u′v−uv′

v2 .

Example : Let f be the function defined on R by f(x) = 3x−4
x2+3 .

f is differentiable on R as a quotient of differentiable functions on R whose denominator does not vanish : we
have f = u

v with {
u(x) = 3x− 4
v(x) = x2 + 3

We have therefore : {
u′(x) = 3
v′(x) = 2x

Thus, f ′ = u′v−uv′

v2 . So :

For x ∈ R, f ′(x) =
3× (x2 + 3)− (3x− 4)× (2x)

x2 + 32
=

−3x2 + 8x+ 9

x2 + 32

Consequence :
Rational functions (quotients of two polynomials) are differentiable on their domain.

Propriété 8.10 (Consequence) Let u be a function that is defined, differentiable, and nonzero on an
interval I.
Let f be the function defined on I by f(x) = 1

u(x) .

Then f is differentiable on I and for x ∈ I, we have f ′(x) = − u′(x)
u(x)2 . We write :(

1

u

)′

= − u′

u2

4. Formula Sheet
In the following formula sheet, k is any fixed real number and n is a nonzero natural integer.

Function f Derivative f ′ Domain of
differentiability of f

x 7→ k x 7→ 0 R
x 7→ x x 7→ 1 R
x 7→ x2 x 7→ 2x R
x 7→ xn x 7→ nxn−1 R

x 7→
√
x x 7→ 1

2
√
x

R∗
+

x 7→ 1

x
x 7→ − 1

x2
R∗

x 7→ cos(x) x 7→ − sin(x) R
x 7→ sin(x) x 7→ cos(x) R

Some reminders :
— If u and v are differentiable on I, then u+ v is differentiable on I and (u+ v)′ = u′ + v′ ;
— If f is differentiable on I, then kf is differentiable on I, and (kf)′ = kf ′ ;
— If u and v are differentiable on I, then uv is differentiable on I and (uv)′ = u′v + uv′ ;
— If u and v are differentiable on I, with v(x) ̸= 0 for x ∈ I, then u

v is differentiable on I and

(uv )
′ = u′v−uv′

v2 .
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