

Derivative functions

Objectives :

- Define the derivative function
- Know the derivative functions of common functions
- Be able to use the formulas for the derivative of a sum, a product, and a quotient
- Study the derivatives of more complex functions using these formulas

1. Derivative Function

Let f be a function defined and differentiable at every a in an interval I. The hypothesis "differentiable" means that for $a \in I$, $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$ exists. We called this limit the « derivative number of f at $a \gg$ in Chapter ??, and we denoted it by f'(a).

Définition 8.1 Let f be a function differentiable at every x in an interval I, then the function that associates x with f'(x) is called the *derivative function* of f on I. It is denoted by f'.

Example : If we consider the "position" function, denoted by $t \mapsto s(t)$ (in this case, we consider a "curvilinear abscissa"), which associates a solid's position on its trajectory to an instant t, then :

- The derivative function of s(t) corresponds to the velocity of the solid, so we denote it by v(t) instead of s'(t).
- We can even look for the derivative function of v(t), which corresponds to the acceleration of the solid, and we denote it by a(t) rather than v'(t) or s''(t).

2. Derivatives of Common Functions

A. Constant Function

Let $k \in \mathbb{R}$ and $f: x \mapsto k$, for $x \in \mathbb{R}$. For $h \neq 0$, $\frac{f(x+h)-f(x)}{h} = \frac{k-k}{h} = 0$. Thus, f is differentiable on \mathbb{R} , and for all $x \in \mathbb{R}$, f'(x) = 0.

Propriété 8.1 The derivative of a constant function is the zero function.

B. The Function $x \mapsto x^n, n \in \mathbb{N}^*$

Propriété 8.2 Let $n \in \mathbb{N}^*$ and f be the function defined on \mathbb{R} by $f(x) = x^n$. Then f is differentiable on \mathbb{R} , and for $x \in \mathbb{R}$, we have $f'(x) = nx^{n-1}$.

Démonstration Idea of the proof :

Let $x \in \mathbb{R}$ and h be a nonzero real number. Let's compute the quotient $\frac{f(x+h)-f(x)}{h}$. First, we have $f(x+h) = (x+h)^n$. Expanding this expression, we obtain terms in x^n , $x^{n-1} \times h$, $x^{n-2} \times h^2$, ..., and h^n . By carefully analyzing how the product $(x+h)(x+h) \dots (x+h)$ expands, we notice that the term x^n appears only once, and the term $x^{n-1} \times h$ appears n times. Thus, we have :

$$(x+h)^n = x^n + n \times x^{n-1}h + \dots + x^{n-2}h^2 + \dots + h^n$$

So:

— …

$$\frac{f(x+h) - f(x)}{h} = \frac{n \times x^{n-1}h + \dots + x^{n-2}h^2 + \dots + h^n}{h} = nx^{n-1} + hQ(x,h)$$

where Q(x, h) is a polynomial expression depending on x and h, whose limit as h approaches 0 exists. Thus, we obtain :

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \left(nx^{n-1} + hQ(x,h) \right) = nx^{n-1}$$

<u>Remark</u> : We therefore obtain the following results :

- If f(x) = x, then for $x \in \mathbb{R}$, we have f'(x) = 1; - If $f(x) = x^2$, then for $x \in \mathbb{R}$, we have f'(x) = 2x;

— If $f(x) = x^3$, then for $x \in \mathbb{R}$, we have $f'(x) = 3x^2$;

Example : Let f be the function defined on \mathbb{R} by $f(x) = x^3$. Determine the equation of the tangent to \mathscr{C}_f at the point with abscissa 1.

The slope of the tangent to \mathscr{C}_f at the point with abscissa 1 is given by f'(1). To calculate f'(1), we can use two methods :

— The definition of the derivative : it is the limit as h approaches 0 of the quotient $\frac{f(1+h)-f(1)}{h}$;

- Or, more quickly, the derivative function of f: for all $x \in \mathbb{R}$, we have $f'(x) = 3x^2$, so $f'(1) = 3 \times 1^2 = 3$. Moreover, we have $f(1) = 1^3 = 1$. The equation of T_1 is therefore : y = f'(1)(x-1) + f(1), that is, y = 3(x-1) + 1, or, simplifying : $T_1 : y = 3x - 2$.

C. Reciprocal Function

Propriété 8.3 Let *f* be the function defined on \mathbb{R}^* by $f(x) = \frac{1}{x}$. Then *f* is differentiable on \mathbb{R}^* , and for $x \neq 0$, we have $f'(x) = -\frac{1}{x^2}$.

Démonstration For $x \neq 0$ and $h \neq 0$ such that $x + h \neq 0$, we have :

$$\frac{f(x+h) - f(x)}{h} = \frac{\frac{1}{x+h} - \frac{1}{x}}{h} = \frac{\frac{x - (x+h)}{x(x+h)}}{h} = \frac{-h}{x(x+h)h} = -\frac{1}{x(x+h)}$$

(. 1)

Thus, we obtain :

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \left(-\frac{1}{x(x+h)} \right) = -\frac{1}{x^2}$$

Example : Let f be the reciprocal function : for $x \neq 0$, $f(x) = \frac{1}{x}$. Determine an equation of the tangent to \mathscr{C}_f at the point with abscissa 1.

This tangent T_1 has the equation y = f'(1)(x-1) + f(1). To determine it, we need f'(1) and $f(1) = \frac{1}{1} = 1$. For all $x \neq 0$, we have $f'(x) = -\frac{1}{x^2}$, so $f'(1) = -\frac{1}{1^2} = -1$. Thus, T_1 has the equation $y = -1 \times (x-1) + 1$, or equivalently, $T_1 : y = -x + 2$.

D. Square Root Function

Propriété 8.4 Let *f* be the function defined on \mathbb{R}_+ by $f(x) = \sqrt{x}$. Then *f* is differentiable on \mathbb{R}^*_+ , and for $x \in \mathbb{R}^*_+$, we have $f'(x) = \frac{1}{2\sqrt{x}}$. Caution : *f* is not differentiable at 0.

Démonstration For $x \in \mathbb{R}^*_+$ and $h \in \mathbb{R}^*_+$, we have :

$$\frac{f(x+h) - f(x)}{h} = \frac{\sqrt{x+h} - \sqrt{x}}{h} = \frac{\sqrt{x+h}^2 - \sqrt{x}^2}{h(\sqrt{x+h} + \sqrt{x})} = \frac{h}{h(\sqrt{x+h} + \sqrt{x})} = \frac{1}{\sqrt{x+h} + \sqrt{x}}$$

Thus, we obtain :

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{2\sqrt{x}}$$

If x = 0, for h > 0, we have $\frac{f(0+h)-f(0)}{h} = \frac{\sqrt{h}}{h} = \frac{1}{\sqrt{h}}$. As h tends to 0, \sqrt{h} also tends to 0, so $\frac{1}{\sqrt{h}}$ takes increasingly large values. Therefore, the limit as h tends to 0 of the quotient $\frac{f(0+h)-f(0)}{h}$ does not exist : the square root function is not differentiable at 0.

Application to Curve Plotting :

To plot the curve representing the square root function, we create a table of values. For each point in this table, we calculate the slope of the tangent to the curve at that point and then determine the equation of the tangent :

a	$\frac{1}{4}$	1	2
f(a)	$\frac{1}{2}$	1	$\sqrt{2}$
f'(a)	1	$\frac{1}{2}$	$\frac{1}{2\sqrt{2}}$

- At $a = \frac{1}{4}$, the equation of the tangent is : $y = 1 \times (x - \frac{1}{4}) + \frac{1}{2}$, which simplifies to $y = x + \frac{1}{4}$;
- At a = 1, the equation of the tangent is : $y = \frac{1}{2}(x-1) + 1$, which simplifies to $y = \frac{1}{2}x + \frac{1}{2}$;
- At a = 2, the equation of the tangent is : $y = \frac{1}{2\sqrt{2}}(x-2) + \sqrt{2}$, which simplifies to

3. Operations on Differentiable Functions

A. Derivative of a Sum

Propriété 8.5 Let u and v be two differentiable functions on an interval I. Let f be the function defined on I by f(x) = u(x) + v(x) (we also write f = u + v on I). Then the function f is differentiable on I, and for $x \in I$, f'(x) = u'(x) + v'(x). We write f' = u' + v'.

Example : Let f be the function defined on \mathbb{R} by $f(x) = x^3 + x^2 + 3$. \overline{f} is differentiable on \mathbb{R} as the sum of differentiable functions on \mathbb{R} , and for $x \in \mathbb{R}$, we have $: f'(x) = 3x^2 + 2x$.

B. Product by a Real Number

Propriété 8.6 Let *u* be a differentiable function on an interval *I*, and λ a real number. Let *f* be the function defined on *I* by $f(x) = \lambda u(x)$ (we write $f = \lambda u$ on *I*). Then the function *f* is differentiable on *I*, and for $x \in I$, $f'(x) = \lambda u'(x)$. We write $f' = \lambda u'$.

Example : Let f be defined on \mathbb{R} by $f(x) = 2x^2$, and g defined on \mathbb{R} by $g(x) = 4x^3 - 2x$. Then, $f'(x) = 2 \times 2x$ and $g'(x) = 4 \times 3x^2 - 2$.

Consequence :

Polynomial functions are therefore differentiable on their domain.

C. Derivative of a Product

Propriété 8.7 Let u and v be two differentiable functions on an interval I. Let f be the function defined on I by f(x) = u(x)v(x). Then, f is differentiable on I, and for $x \in I$, f'(x) = u'(x)v(x) + u(x)v'(x). We write f' = u'v + uv'.

Démonstration (*Idea of the proof*) For $a \in I$ and $h \neq 0$ such that $a + h \in I$, we have :

$$\frac{(uv)(a+h) - (uv)(a)}{h} = \frac{u(a+h).v(a+h) - u(a).v(a)}{h}$$

= $\frac{u(a+h).v(a+h) - u(a).v(a+h) + u(a).v(a+h) - u(a).v(a)}{h}$
= $v(a+h) \times \frac{u(a+h) - u(a)}{h} + u(a) \times \frac{v(a+h) - v(a)}{h}$

Now, we have $\lim_{h \to 0} v(a+h) = v(a)$, $\lim_{h \to 0} \frac{u(a+h)-u(a)}{h} = u'(a)$, and $\lim_{h \to 0} \frac{v(a+h)-v(a)}{h} = v'(a)$.

Assuming (under certain conditions satisfied here) that the limit of a product is the product of the limits (and similarly for the sum), we get :

$$\lim_{h \to 0} \frac{(uv)(a+h) - (uv)(a)}{h} = v(a) \times u'(a) + u(a) \times v'(a)$$

This is true for all $a \in I$, so on I we have f' = u'v + uv'.

 $\begin{array}{l} \underline{\text{Example}}: \text{Let } f \text{ be the function defined on } \mathbb{R}_+ \text{ by } f(x) = x^3 \sqrt{x}.\\ \hline f \text{ is differentiable on } \mathbb{R}_+^* \text{ as the product of differentiable functions }: f \text{ can be written as } u \times v \text{ with} \\ \begin{cases} u(x) = x^3 \\ v(x) = \sqrt{x} \end{cases}, \text{ where } u \text{ is differentiable on } \mathbb{R} \text{ and } v \text{ is differentiable on } \mathbb{R}_+^*. \end{array}$

We have therefore : $\begin{cases} u'(x) = 3x^2 \\ v'(x) = \frac{1}{2\sqrt{x}} \end{cases}$ With these notations, we have f' = u'v + uv' so :

For
$$x > 0$$
, $f'(x) = u'(x)v(x) + u(x)v'(x) = (3x^2)\sqrt{x} + x^3 \times \frac{1}{2\sqrt{x}} = 3x^2\sqrt{x} + \frac{x^3}{2\sqrt{x}}$

Simplifying, we get :

$$f'(x) = 3x^2\sqrt{x} + \frac{1}{2}x^3 \times \frac{\sqrt{x}}{\sqrt{x}\sqrt{x}} = x^2\sqrt{x} + \frac{1}{2}x^2\sqrt{x} = \frac{7}{2}x^2\sqrt{x}$$

<u>Remark</u>: In the case of this example, property 7.7 allows us to state that f is differentiable on \mathbb{R}^*_+ , but it does not allow us to conclude about the differentiability of f at 0.

To do so, we return to the definition of the derivative : f is differentiable at 0 if the quotient $\frac{f(0+h)-f(0)}{h}$ has a real limit as $h \to 0$. We have :

$$\frac{f(0+h) - f(0)}{h} = \frac{h^3 \sqrt{h}}{h} = h^2 \sqrt{h}$$

Therefore :

$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} h^2 \sqrt{h} = 0$$

Thus, f is differentiable at 0 and f'(0) = 0.

Propriété 8.8 (Consequence) Let u be a differentiable function on an interval I. Let f be the function defined on I by $f(x) = (u(x))^2$. Then the function f is differentiable on I and for all $x \in I$, we have $f'(x) = 2 \times u(x) \times u'(x)$. We write :

$$\left(u^2\right)' = 2uu'$$

D. Derivative of a quotient

Propriété 8.9 Let u and v be two differentiable functions on an interval I, with $v(x) \neq 0$ for $x \in I$. Let f be the function defined on I by $f(x) = \frac{u(x)}{v(x)}$. Then, f is differentiable on I and for $x \in I$, $f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}$. We write $f' = \frac{u'v - uv'}{v^2}$.

Démonstration (*Idea of the proof*) For $a \in I$ and $h \neq 0$ such that $a + h \in I$, we have :

$$f(a+h) - f(a) = \frac{u(a+h)}{v(a+h)} - \frac{u(a)}{v(a)}$$

= $\frac{u(a+h).v(a) - u(a).v(a+h)}{v(a+h).v(a)}$
= $\frac{u(a+h).v(a) - u(a).v(a) + u(a).v(a) - u(a).v(a+h)}{v(a+h).v(a)}$
= $\frac{1}{v(a+h).v(a)} \times (v(a) \times (u(a+h) - u(a)) + u(a) \times (v(a) - v(a+h)))$

We divide the entire expression by h, and we get :

$$\frac{f(a+h) - f(a)}{h} = \frac{1}{v(a+h).v(a)} \times \frac{v(a) \times (u(a+h) - u(a)) + u(a) \times (v(a) - v(a+h))}{h}$$
$$= \frac{1}{v(a+h).v(a)} \times \left(v(a) \times \frac{u(a+h) - u(a)}{h} + u(a) \times \frac{v(a) - v(a+h)}{h}\right)$$

Now we have $\lim_{h\to 0} v(a+h) = v(a)$, $\lim_{h\to 0} \frac{u(a+h)-u(a)}{h} = u'(a)$, and $\lim_{h \to 0} \frac{v(a+h) - v(a)}{h} = v'(a).$

Assuming (under certain conditions satisfied here) that the limit of a product is the product of the limits (and similarly for the sum and quotient), we get :

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \frac{v(a) \times u'(a) - u(a) \times v'(a)}{(v(a))^2}$$

This is true for all $a \in I$, so on I we have $f' = \frac{u'v - uv'}{v^2}$.

Example : Let f be the function defined on \mathbb{R} by $f(x) = \frac{3x-4}{x^2+3}$. \overline{f} is differentiable on \mathbb{R} as a quotient of differentiable functions on \mathbb{R} whose denominator does not vanish : we have $f = \frac{u}{v}$ with

 $\left\{\begin{array}{l} u(x) = 3x - 4\\ v(x) = x^2 + 3 \end{array}\right.$

We have therefore :

$$\begin{cases} u'(x) = 3\\ v'(x) = 2x \end{cases}$$

Thus, $f' = \frac{u'v - uv'}{v^2}$. So :

For
$$x \in \mathbb{R}$$
, $f'(x) = \frac{3 \times (x^2 + 3) - (3x - 4) \times (2x)}{x^2 + 3^2} = \frac{-3x^2 + 8x + 9}{x^2 + 3^2}$

Consequence :

Rational functions (quotients of two polynomials) are differentiable on their domain.

Propriété 8.10 (Consequence) Let u be a function that is defined, differentiable, and nonzero on an interval I. Let f be the function defined on I by $f(x) = \frac{1}{u(x)}$.

Then f is differentiable on I and for $x \in I$, we have $f'(x) = -\frac{u'(x)}{u(x)^2}$. We write :

$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$

4. Formula Sheet

In the following formula sheet, k is any fixed real number and n is a nonzero natural integer.

Function f	Derivative f'	Domain of
		differentiability of f
$x\mapsto k$	$x\mapsto 0$	\mathbb{R}
$x \mapsto x$	$x \mapsto 1$	\mathbb{R}
$x \mapsto x^2$	$x \mapsto 2x$	\mathbb{R}
$x \mapsto x^n$	$x \mapsto nx^{n-1}$	\mathbb{R}
$x \mapsto \sqrt{x}$	$x \mapsto \frac{1}{2\sqrt{x}}$	\mathbb{R}^*_+
$x \mapsto \frac{1}{x}$	$x\mapsto -rac{1}{x^2}$	\mathbb{R}^*
$x \mapsto \cos(x)$	$x\mapsto -\sin(x)$	\mathbb{R}
$x \mapsto \sin(x)$	$x \mapsto \cos(x)$	\mathbb{R}

Some reminders :

- If u and v are differentiable on I, then u + v is differentiable on I and (u + v)' = u' + v';
- If f is differentiable on I, then kf is differentiable on I, and (kf)' = kf';
- If u and v are differentiable on I, then uv is differentiable on I and (uv)' = u'v + uv';
- If u and v are differentiable on I, with $v(x) \neq 0$ for $x \in I$, then $\frac{u}{v}$ is differentiable on I and $(\frac{u}{v})' = \frac{u'v uv'}{v^2}$.