Derivative functions

Objectives :
— Define the derivative function
— Know the derivative functions of common functions
— Be able to use the formulas for the derivative of a sum, a product, and a quotient
— Study the derivatives of more complex functions using these formulas

1. Derivative Function

Let f be a function defined and differentiable at every a in an interval I.
The hypothesis ”differentiable” means that for a € I, limy,_,q W exists.
We called this limit the < derivative number of f at a » in Chapter ??, and we denoted it by f/(a).

Définition 8.1 Let f be a function differentiable at every x in an interval I, then the function that asso-
ciates = with f’(x) is called the derivative function of f on I. It is denoted by f’.

Example : If we consider the ”position” function, denoted by ¢ — s(¢) (in this case, we consider a ”curvilinear
abscissa”), which associates a solid’s position on its trajectory to an instant ¢, then :
— The derivative function of s(¢) corresponds to the velocity of the solid, so we denote it by v(t) instead
of §'(t).
— We can even look for the derivative function of v(t), which corresponds to the acceleration of the solid,
and we denote it by a(t) rather than v'(t) or s”(t).
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2. Derivatives of Common Functions

A. Constant Function

Let k € R and f: 2+ k, for = € R. For h # 0, LEH=I@) _ kb _ g
Thus, f is differentiable on R, and for all z € R, f/(z) = 0.

Propriété 8.1 The derivative of a constant function is the zero function.

B. The Function = — 2", n € N*

Propriété 8.2 Let n € N* and f be the function defined on R by f(z) = z™.
Then f is differentiable on R, and for z € R, we have f/(z) = nz" .

Démonstration /dea of the proof :

Let x € R and h be a nonzero real number. Let’s compute the quotient w First, we have

f(x + h) = (x + h)"™. Expanding this expression, we obtain terms in 2™, 2”1 x h, x"~2 x h2, ..., and h"™. By
carefully analyzing how the product (z + h)(z + k) ... (x + h) expands, we notice that the term =™ appears
only once, and the term z"~! x h appears n times. Thus, we have :

(z+h)"=2"+nxa" tht 2" 2R+ A

So:
—_ n—1 oo n—2p2 oo n

where Q(z, h) is a polynomial expression depending on = and h, whose limit as h approaches 0 exists. Thus,
we obtain :

%13% w — }11% (nxnfl + hQ($,h)) — np™ !

Remark : We therefore obtain the following results :
— If f(x) = x, then for z € R, we have f'(z) =1;
— If f(x) = 22, then for z € R, we have f'(z) = 2z;
— If f(z) = 23, then for z € R, we have f/(x) = 322;

Example : Let f be the function defined on R by f(z) = 3. Determine the equation of the tangent to €} at
the point with abscissa 1.
The slope of the tangent to % at the point with abscissa 1 is given by f’(1). To calculate f/(1), we can use
two methods :

— The definition of the derivative : it is the limit as h approaches 0 of the quotient w ;

— Or, more quickly, the derivative function of f : for all € R, we have f/(x) = 322, so f/(1) =3 x 12 = 3.
Moreover, we have f(1) = 13 = 1. The equation of T} is therefore : y = f'(1)(z — 1) + f(1), that is,
y=3(x—1)+1, or, simplifying : T : y = 3z — 2.

C. Reciprocal Function

Propriété 8.3 Let f be the function defined on R* by f(z) = L.
Then f is differentiable on R*, and for = # 0, we have f/(z) = — .

x

Démonstration For z # 0 and h # 0 such that = + h # 0, we have :

z—(x+h)
f@+h) —fl@)  mm—3 _ aww __ —h 1

h h h xzl@+h)h  x(z+h)




Thus, we obtain :
o feth = fl@) o 1 \_ 1
}11_1% h N flng%) z(x+h)) a2

Example : Let f be the reciprocal function : for = # 0, f(z) = % Determine an equation of the tangent to 6%
at the point with abscissa 1.
This tangent 77 has the equation y = f'(1)(x — 1) + f(1).

To determine it, we need f/(1) and f(1) = % =1.
For all = # 0, we have f'(x) = Ihsof():—%:—l
Thus, T3 has the equation y = —1 x (z — 1) + 1, or equivalently, T} : y = —x + 2.

D. Square Root Function

Propriété 8.4 Let f be the function defined on R, by f(z) = f
Then f is differentiable on R, and for = € R, we have f'(z) = 2\/5.
Caution : f is not differentiable at 0.
Démonstration For z € R’ and h € R’ , we have :
f@+h) —f(@) _Voth—Vi_ otk —ya® _ h 1
h h h(vVzx+h++yx) h(Vz+h+x) Ve+h+Jz
Thus, we obtain :
lim M — lim 1 _ 1
h—0 h Che0ZT+h+T 2V
If 2 = 0, for i > 0, we have {OH=I() _ VA _ ﬁ As h tends to 0, v/h also tends to 0, so ﬁ takes
increasingly large values. Therefore, the limit as h tends to 0 of the quotient =70 goes not exist : the
square root function is not differentiable at 0.

Application to Curve Plotting :

To plot the curve representing the square root function, we create a table of values. For each point in this
table, we calculate the slope of the tangent to the curve at that point and then determine the equation of the
tangent :

a % 1 2 y = %ﬁ + g
fla) | 5[ 1] V2 n
P 1355
C
— Ata= %, the equation of the tangent is :
y=1x (z— %)+ 3, which simplifies to 1 B
y=a+1;
— At a =1, the equation of the tangent is : -
Y= %(a: — 1) + 1, which simplifies to J
Yy=3T+ 2 ; /
— At a = 2, the equation of the tangent is : - > I
y= 2\[(55 — 2) + /2, which simplifies to ¢



3. Operations on Differentiable Functions

A. Derivative of a Sum

Propriété 8.5 Let u and v be two differentiable functions on an interval I.
Let f be the function defined on I by f(z) = u(z) + v(z) (we also write f = u + v on I).
Then the function f is differentiable on I, and for = € I, f/(x) = «/(z) + v'(x). We write f/ = u' 4+ v'.

Example : Let f be the function defined on R by f(z) = 2% + 2% + 3.
f is differentiable on R as the sum of differentiable functions on R, and for x € R, we have : f’(z) = 322 + 2z.

B. Product by a Real Number

Propriété 8.6 Let u be a differentiable function on an interval I, and X a real number.
Let f be the function defined on I by f(x) = Au(z) (we write f = Au on I).
Then the function f is differentiable on I, and for z € I, f'(x) = \u/(z). We write f/ = Au'.

Example : Let f be defined on R by f(z) = 222, and g defined on R by g(z) = 423 — 2x.
Then, f/(r) =2 x 2z and ¢'(z) = 4 x 322 — 2.

Consequence :
Polynomial functions are therefore differentiable on their domain.

C. Derivative of a Product

Propriété 8.7 Let u and v be two differentiable functions on an interval I.
Let f be the function defined on I by f(z) = u(z)v(x).
Then, f is differentiable on I, and for z € I, f'(z) = v/ (x)v(z) + u(x)v'(x). We write [ = v'v + uv'.

Démonstration (/dea of the proof) For a € I and h # 0 such that a + h € I, we have :

(uv)(a+ h) — (uv)(a) _ u(a+ h).v(a+ h) —u(a).v(a)
h h
_ u(a+ h).w(a+ h) —ula).v(a+ h) +ula).v(a+ h) —u(a).v(a)
h

y u(a + h})L — u(a)

v(a+ h) —v(a)

= v(a+h) + u(a) x

Now, we have lim v(a + h) = v(a),

(ath)—u(a@)
1- ula —ula —
A w(a),
and lim 2leth)=vl@) — 4r(g)

heo o h o - - . -

Assuming (under certain conditions satisfied here) that the limit of a product is the product of the limits (and
similarly for the sum), we get :

o (W)@ + 1) = (u0) @)

70 h = v(a) x ¥ (a) +u(a) x v'(a)

This is true for all a € I, so on I we have f' = u'v + uv’.

Example : Let f be the function defined on Ry by f(x) = 23\/z.

f is differentiable on R% as the product of differentiable functions : f can be written as u x v with
u(x) = 3

{ o(@) = V7

, where u is differentiable on R and v is differentiable on R} .



uw'(z) = 322
We have therefore : ,( ) 1.
v'(x) = NG
With these notations, we have f' = u/v + uv’ so :

23
For z > 0, f'(x) = u/(2)v(x) + u(x)v'(z) = (32%)vz + 2° x % =32z + Nz

Simplifying, we get :
1 1
f(x) = 32z + 5:103 X \/\5/\5/5 =2’Vz + 5302\/3? = gxzx/:;

Remark : In the case of this example, property 7.7 allows us to state that f is differentiable on R, but it does
not allow us to conclude about the differentiability of f at 0.
To do so, we return to the definition of the derivative : f is differentiable at 0 if the quotient w has a

real limit as h — 0. We have : s R
h) — h3Vh
O =0 ISR _ oy

Therefore :

lim w = 1lim h2Vh =0
h—0 h h—0

Thus, f is differentiable at 0 and f/(0) = 0.

Propriété 8.8 (Consequence) Let u be a differentiable function on an interval I.
Let f be the function defined on I by f(z) = (u(xz))>.
Then the function f is differentiable on I and for all « € I, we have f/(z) = 2 x u(z) x u/(z). We write :

(ug), = 2uu’

D. Derivative of a quotient

Propriété 8.9 Let u and v be two differentiable functions on an interval I, with v(x) # 0 for z € I.

Let f be the function defined on I by f(z) = “;g;f;

Then, f is differentiable on I and for z € I, f'(x) = “'@)”((f)(;;gm)“’(@. We write f/ = “”U;;“’

Démonstration (/dea of the proof) For a € I and h # 0 such that a + h € I, we have :

flath) - fla) = 200t

u(a + h).v(a) —u(a).v(a) + u(a).v(a) — u(a).v(a + h)
v(a + h).v(a)

= m x (v(a) x (u(a+h) —u(a)) +u(a) x (v(a) —v(a+ h)))

We divide the entire expression by h, and we get :

flath)—fla) _ 1 o 2@) x (u(a+h) —ufa)) +ufa) x (v(a) —v(a +h))
h v(a + h).v(a) h
B 1  (v(a u(a + h) —u(a) wla Xv(a)—v(a—l—h)
~ wv(a+h).w(a) ( (a) x h +ula) h >

Now we have lim v(a 4+ h) = v(a),
h—0

i ey 2



and }133% M ='(a).

Assuming (under certain conditions satisfied here) that the limit of a product is the product of the limits (and
similarly for the sum and quotient), we get :
fla+h)— f(a)

Jimy h -

This is true for all a € I, so on I we have f' = “”U;;”

Example : Let f be the function defined on R by f(z) = ‘zifjr;

f is differentiable on R as a quotient of differentiable functions on R whose denominator does not vanish : we
have f = % with

We have therefore :

’ ’
Thus’ f/ — U v—uv

vz

So :

—3224+8zx+9
72 + 32

For z € R, f'(z) = 3x (2% + 312_4(_3;_ ) x (22) _

Consequence :
Rational functions (quotients of two polynomials) are differentiable on their domain.

Propriété 8.10 (Consequence) Let u be a function that is defined, differentiable, and nonzero on an
interval I.
Let f be the function defined on I by f(z) = ﬁ

Then f is differentiable on I and for z € I, we have f/(z) = — . We write :

4. Formula Sheet

In the following formula sheet, k is any fixed real number and n is a nonzero natural integer.

Function f Derivative f' Domain of
differentiability of f
x—k x—0 R
T T x—1 R
T x? T2z R
Tz x = na" L R
1
— - — R
x x x NG A
T T *
X x
x +— cos(z) x +— —sin(x) R
x +— sin(z) x +— cos(z) R

Some reminders :

— If w and v are differentiable on I, then u + v is differentiable on I and (u +v)' =’ +v';
— If f is differentiable on I, then kf is differentiable on I, and (kf) = kf’;

— If u and v are differentiable on I, then uv is differentiable on I and (uv)’ = v'v + wv’;

— If w and v are differentiable on I, with v(x) # 0 for z € I, then % is differentiable on I and

! !
(g)/ _ uv—uw
v v2




